

Istraživanje i razvoj lijekova - od ideje do tržišta!

SAJAM IDEJA 2017

Dr. sc. Ines Vujasinović, dipl. kem. ing.

FKIT, Marulićev trg 19, Zagreb 23. listopada 2017

©Copyright 2016 Galapagos NV

Discovery of new drug!

Long and highly risky road!

How to decide what to work on?

Drug discovery & development process

Target identification and validation

- Target identification: to identify molecular targets that are involved in disease progression
- Target validation: to prove that manipulating the molecular target can provide therapeutic benefit for patients (biochemical, cellular, or animal models)
- A target is never fully validated until a drug acting on it works on patient!

- Common receptors include proteins and enzymes
- Current drug therapies addresses around 500 biological targets.
- HG contains 12000-14000 encoding secreted proteins.

What is a drug?

- Any biologically active chemical <u>that does not occur naturally</u> in the human body that causes a physiological change in the body.
- Drugs are used for the treatment, prevention or alleviating the symptoms of disease.

Searching for Compounds – HIT finding

After target validation, next step is to find a chemicals that might modify the target or targets

specific assay

development

This sophisticated process can be divided into three distinct steps:

development and maintenance of large compound libraries

- All compounds are stored in coded vials and organized in central bank so that they could be used on different biological targets.
- Some contains more than 5 million chemicals including products from natural sources.

- Assays are analyses that quantify the interaction of the biological target and the compound.
- They also might measure how the presence of the compound changes the way in which the biological target behaves.

high-throughput screening (automated system)

- · Identification of compounds with activity against biological targets.
- Fast and reproducible capable to perform screen on >1000 compounds per day.
- The purpose of this chemistry stage is to refine the compound.

Fragment-Based Drug Discovery

Alternative to HTS: Fragment-Based Drug Discovery (FBDD)

Typical compound hit from HTS screen

- Large molecule (MW between 250 600)
- Broad surface contact with no high quality interactions in key pockets
- May contain functional groups that contribute poorly to protein binding
- Emphasis on potency (30 μM nM hit activity)

The idea that large molecules can be considered combinations of two or more individual fragments is a fundamental principle of fragment-based drug discovery

Typical compound hits from FBDD

- Smaller molecule (MW between 150 300)
- High proportion of the functional groups involved in binding
- · Clearly interacts with pockets
- Potency in the range of mM to 30 μM
- · Emphasis on efficiency and design

Rees, D.C.; Congreve, M.; Murray, C.W.; Carr, R. *Nature* 2004, *3*, 660. Scott, D.E.; Coyne, A.G.; Hudson, S.A.; Abell, C. *Biochemistry* 2012, *51*, 4990.

4

What when we found hit molecule?

Modern rational approach

Drug discovery cycles in Fidelta

Synthetic and medicinal chemistry

- Synthesis (traditional, flow, libraries, MW, scale up)
- Purification
- Identification and structure, characterization

Biological activity

- Biochemical assays on various protein classes delivered by different screening technologies (absorbance, radioactivity, luminescence and fluorescence) supported by assay development, optimization and validation
- Disease relevant *in* vitro assays

(in biochemistry, cell biology, microbiology, molecular biology)

- Access to and assays in human disease tissue
- In vivo animal models (models of inflammation, infection, metabolic diseases and oncology)
- Translational approaches and biomarker discovery and evaluation.

Pharmacokinetics What is ADME? Where it happens?

In vitro ADME

Permeability	Binding	DDI
 Cellular permeability MDCK, MDCK-MDR1 Caco-2 Artificial membranes PAMPA Skin PAMPA 	 Plasma protein binding Equilibrium Dialysis Ultrafiltration Blood Partitioning Tissue Binding Microsomal binding 	 Inhibition CYP450 direct inhibition & MDI (recombinant, HLM) Reactive metabolites Glutathione trapping
Solubility	Metabolic Stability	Metabolite Profiling & ID
 Kinetic solubility Thermodynamic solubility pH SGF, FeSSIF 	 Microsomes, S9, Hepatocytes Recombinant enzymes Plasma and blood SGF, FeSSIF 	 Aldehyde Oxidase Reaction Phenotyping Metabolite Identification Interspecies Profiling

In vivo pharmacokinetics

Preclinical development

- Usual time duration: 1.5 years
- Performed on animal models
- The aims of preclinical testing:
 - to evaluate a drug's safety, efficacy, and potential toxicity in animal models
 - > to prove that a drug is not carcinogenic, mutagenic or teratogenic
 - > result of work at this stage is a pharmacological profile of the drug
 - PK / PD model
 - Formulation

Clinical development

Regulatory approval

- Usual time duration: 1-2 years
- Submission of full date and review by regulatory agencies

MEDICINES HEALTH

Finally How to decide what to work on?

Differentiate your product

Differentiated positioning begins on factors established in clinical trials

- Efficacy and safety
- Unmet needs (no effective therapy available, current drugs sub-optimal)

19

Target patient population (personalised medicine, gene therapy)

